Unit - 28 - CHEMESTRY PRACTICAL

Important Points

Chemical analysis : Analytical chemistry deals with qualitative and quantitative analysis of substances. **Qualitative analysis :** A salt consists of two parts known as radicals. The positively charged part of a salt (cation) which has been derived from a base is termed as basic radical and the negatively charged part of salt (anion) which has been derived from an acid is termed as acidic radical. In qualitative inorganic analysis, the given compound is analysed for the basic and acid radicals (i.e., the cations and the anions), that it contains. For example zinc blende is analysed for the Zn^{2+} and S^{2-} ions that it contains.

Systematic Procedure for Qualitative Analysis of Inorganic Salts

It involves the following steps : (1) Preliminary tests (2) Wet tests for acid radicals and (3) Wet tests for basic radicals.

(1) Peliminary Test

Colour	Salt
Black	Oxides : MnO_2 , FeO, CuO, Co ₃ O ₄ , Ni_2O_3
	Sulphides : $Ag_2S, CuS, Cu_2S, FeS, CoS, NiS, PbS, HgS, Bi_2S_3$ (blackish brown)
Blue	Hydrated CuSO ₄ , anhydrous CoSO ₄
Orange	KO_2 , some dichromate $(K_2Cr_2O_7)$, Sb_2S_3 , ferricyanides
Green	Nickel salts, hydrated ferrous salts, potassium permanganate KMnO ₄), some
_	copper (II) salts
Brownish yellow	Sns
Dark brown	$PbO_2, Ag_2O, CdO, Fe_2O_3, CuCrO_4, FeCl_3$ (but yellow in aq. solution)
Pale brown	MnCO ₃
Light pink	Hydrated manganese salts
Reddish pink	Hydrated cobalt (II) salts
Red	HgI_2, Pb_3O_4
Yellow	$CdS, PbI_2, AgBr, AgI$, chromates

(ii) Flame test :

Characteristic flame colour : Certain metals and their salts impart specific colours to Bunsen burner flame.

- (a) Pb imparts pale greenish colour to the flame.
- (b) Cu and Cu salts impart blue or green colour to the flame.
- (c) Ba and its salts impart apple green colour to the flame.
- (d) Ca imparts brick red colour to the flame.

(iii) Borax bead test :

The transparent glassy bead $(NaBO_2 + B_2O_3)$ when heated with inorganic salt and the colour produced gives some idea of cation present in it.

Colour of bead in oxidising flame	Colour of bead in reducing flame	Basic radical present
Greenish when hot, blue in cold.	Red and opaque	Cu
Yellow when hot	Green	Fe
Brown in cold	Grey or black or opaque	Ni

(iv) Charcoal cavity test

(a) Compound fused in cavity directly		
Nature and colour of bead	Cation	
Yellow, soft bead which marks on paper	Pb^{2+}	
White yellow when hot	ZnO	
Grey metallic particles attracted by magnet	Fe, Ni, CO	

(2) Wet tests for acid radicals :

Salt or mixture is treated with dil. H_2SO_4 and also with conc. separately and by observing the types of gases evolved. Confirmatory tests of anions are performed.

Observations	Acid Radical	Confirmatory test
Brisk effervescence	CO ₃ ²⁻	Gas turns lime water milky but milkyness disappears on
with evolution of	(carbonate)	passing gas inexcess,
colourless and odourless gas.		$Na_2CO_3 + H_2SO_4 \longrightarrow Na_2SO_4 + H_2O + CO_2$
odouriess gas.	D	$\begin{array}{c} Ca(OH)_2 + CO_2 \longrightarrow CaCO_3 + H_2O \\ \text{lime water} \end{array}$
	<u> </u>	$CaCO_3 + H_2O + CO_2 \longrightarrow Ca(HCO_3)_2$
Brown fumes	NO_2^- (Nitrite)	Add KI and starch solution blue colour
		$2NaNO_3 + H_2SO_4 \longrightarrow Na_2SO_4 + 2HNO_2; HNO_2 \longrightarrow NO$
		(colourless); $2NO + O_2(air) \longrightarrow 2NO_2(brown)$
		$2KI + H_2SO_4 + 2NHO_2 \longrightarrow K_2SO_4 + 2H_2O + 2NO + I_2 I_2 +$
	· · · ·	starch ?? ? →blue colour
Smell of rotten eggs	S ²⁻ (sulphide)	Gas turn lead acetate paper black
$(H_2 S \text{ smell})$ on		Sodium carbonate extract $(SE)^*$ + sodium nitroprusside –
heating		purple colour, $Na_2S + H_2SO_4 \longrightarrow H_2S + Na_2SO_4$
		$H_2S + (CH_3COO)_2Pb \longrightarrow PbS + 2CH_3COOH$
		$Na_2S + Na_2[Fe(CN)_5NO] \longrightarrow Na_4[Fe(CN)_5NOS]$
		sodium nitroprusside (purple)

Observations with Dilute H₂SO₄

Observations with concentrated H_2SO_4

Observation	Acid Radical	Confiramatory Test
Colourless pungent gas giving white fumes	Cl- (chloride)	(i) Add MnO_2 in the same test tube and heatpale green Cl_2 gas (ii) $S.E.+HNO_3 + AgNO_3$ solution –white ppt. soluble in aq. NH_3
with aq. NH ₄ OH		(iii) Chromyl chloride test
Reddish brown fumes	<i>Br</i> [−] (bromide)	(iv) Add Mn_2O and heat-yellowish brown Br_2 gas
		(v) $S.E.+HNO_3 + AgNO_3$ solution -pale yellow ppt. partially
		soluble aq. NH_3
		(vi) Layer test
Violet pungent vapours	I ⁻ (iodide)	(vii) $S.E.+HNO_3 + AgNO_3 \rightarrow$ yellow ppt. insoluble in aq. NH_3
turning starch paper blue.		(viii) Layer test
Brown pungent fum es intensified by the addition of <i>Cu</i> -turnigs.	NO_3^- (nitrate)	(ix) Ring test

Reactions

Chloride :

(i)
$$KCl + \operatorname{conc.} H_2SO_4 \longrightarrow KHSO_4 + HCl$$

$$HCl + NH_3 \longrightarrow NH_4Cl$$

(white fumes)

 $4HCl + MnO_2 \xrightarrow{\Delta} MnCl_2 + Cl_2 + 2H_2O$

(ii)
$$KCl + AgNO_3 \longrightarrow AgCl \downarrow + KNO_3$$

white ppt.

$$AgCl + aq. 2NH_3 \longrightarrow [Ag(NH_3)_2]Cl$$

(iii) Chromyl- chloride test :

Chloride + $K_2Cr_2O_7(\text{solid}) + \text{conc.} H_2SO_4 \xrightarrow{\text{heat}} \text{reddish brown vapours of chromyl-chloride}$ (CrO_2Cl_2). Pass these vapours into NaOH, when yellow Na_2CrO_4 solution is formed. On adding CH_3COOH and $(CH_3COO)_2$ Pb, yellow ppt. of lead chromate ($PbCrO_4$) is formed.

Bromide :

(iv)
$$KBr + conc.H_2SO_4 \xrightarrow{\Lambda} KHSO_4 + H$$
; $4HBr + MnO_2 \xrightarrow{\Lambda} Br_2 + 2H_2O + MnBr_2$

(v) $NaBr + AgNO_3 \longrightarrow AgBr \downarrow + NaNO_3$ pale yellow ppt.

 $AgBr + aq. 2NH_3 \longrightarrow [Ag(NH_3)_2]Br$

(vi) Layer Test : S.E. + Cl_2 water + $CHCl_3$ ______ shake ______ yellowish orange colour in layer or can be taken instead of $CHCl_3$); $2NaBr + Cl_2 \longrightarrow 2NaCl + Br_2$

In case of I^- , violet colour of I_2 in CHCl₃ layer, $2NaI + Cl_2 \longrightarrow 2NaCl + I_2$ (violet)

Iodide :

(vii) $KI + \text{conc.}H_2SO_4 \xrightarrow{\Lambda} KHSO_4 + HI$; $2HI + H_2SO_4 \longrightarrow I_2 + 2H_2O + SO_2$

Nitrate :

$$NaNO_3 + H_2SO_4 \longrightarrow NaHSO_4 + HNO_3$$

 $4HNO_3 \longrightarrow 4NO_2 + O_22H_2O_5$

 $Cu + 4HNO_3 \longrightarrow Cu(NO_3)_2 + 2NO_2 + 2H_2O$

(viii) Ring test : To water extract (all NO_3^- are water soluble) add freshly prepared $FeSO_4$ solution and

then conc. H_2SO_4 carefully by the side of the test- tube. A dark brown ring of $[Fe(H_2O)_5 NO]^{2+}SO_4^{2-}$ at the interface between the two liquids is formed.

 $\begin{aligned} &2NaNO_3 + H_2SO_4 \longrightarrow &2NaHSO_4 + 2HNO_3 \ ; \\ &2HNO_3 + 6Fe \ SO_4 + 3H_2SO_4 \longrightarrow &3Fe_2(SO_4)_3 + 2NO + 4H_2O \\ &[Fe(H_2O)_6]SO_4 + NO \longrightarrow &[Fe(H_2O)_5 NO]^{2+} SO_4^{2-} + H_2O \end{aligned}$

243

Specific test in solution

- (i) Sulphate : S.E. add dil. (to decompose CO_3^{2-} until reaction ceases). Add $BaCl_2$ solution. White ppt. insoluble in conc. HNO_3 , $BaCl_2 + NaSO_4 \longrightarrow BaSO_4 \downarrow + 2NaCl_{white ppt.}$
- (ii) **Borate**: Ignite the mixture containing borate, conc. H_2SO_4 . And ethanol in a china-dish with a burning splinter –green edged flame of ethyl borate.

 $2Na_{3}BO_{3} + 3H_{2}SO_{4} \rightarrow 2H_{3}BO_{3} + 3Na_{2}SO_{4},$

$$\begin{array}{c}H_{3}BO_{3}+3C_{2}H_{5}OH \xrightarrow{\Delta} (C_{2}H_{5}O)_{3}B+3H_{2}O\\ \overset{burns with green flame}{(volatile)}\end{array}$$

In presence of Cu^{2+} , perform this test in a test tube since salts are not volatile.

(iii) S.E. + HNO₃ + ammonium molybdate solution. Heat, yellow crystalline ppt. confirms

$$PO_4 + 12(NH_4)_2MoO_4 + 24HNO_3 \xrightarrow{\Delta} (NH_4)_3PO_4 \cdot 12MoO_3 + 21NH_4NO_3 + 3NaNO_3 + 12H_2O_4 \cdot 12MoO_3 + 21NH_4NO_3 + 3NaNO_3 + 3NANO_3$$

Arsenic also gives this test. Hence presence of phosphate should also be checked after group II. **Fluoride** : Sand +salt (F^-) + conc. H_2SO_4 ; heat and bring a water wetted rod in contact with

(iv) *Fluoride* : Sand +salt (F⁻) + conc. H_2SO_4 ; heat and bring a water wetted rod in contact with vapours at the mouth of the test tube. A white deposit on the rod shows the presence to F⁻. $NaF + H_2SO_4 \xrightarrow{\Delta} NaHSO_4 + HF$

 $SiO_2 + 4HF \xrightarrow{\Lambda} SiF_4 + 2H_2O$

 $3SiF_44H_2O \longrightarrow 2H_2SiF_6 + H_4SiO_2$

(3) Wet tests for basic radicals :

 Na_3

Analysis of Basic Radicals

Group	Basic radicals	Group reagent	Ppt. as	Explanation
Ι	Ag ⁺ , Hg ²⁺ ₂ (I), Pb ²⁺	dil <i>HCl</i>	Chloride (AgCl, Hg ₂ Cl ₂ , PbCl ₂)	K_{SP} values of chlorides are low, hence precipitated. Others have higher K_{SP} values hence not precipitated.
II	Cu ²⁺ ,Cd ²⁺ ,Pb ²⁺ , Hg ²⁺ (II), Bi ³⁺ ,As ³⁺ , Sb ³⁺ ,Sn ²⁺	H_2S gas in presence of dil. <i>HCl</i>	Sulphides (C uS , As_2S_3 etc.)	K_{SP} values of sulphides are low hence precipitated by low $[S^{2-}]$ ion. <i>HCl</i> (with common H^+ ion) decreases ionization of H_2S which gives low $[S^{2-}]$. Hence II group is precipitated. Others with higher K_{SP} values not precipitated.
III	Al ³⁺ ,Cr ³⁺ ,Fe ³⁺	NH ₄ OH in presence of NH ₄ Cl	Hydroxide, <i>Al</i> (<i>OH</i>) ₃ etc.	K_{SP} values of $Al(OH)_3$ etc. are low. NH_4Cl (with common NH_4^+ ion)decreases ionization of NH_4OH giving low $[OH^-]$. Hence group III isprecipitated.
IV	Zn ²⁺ ,Ni ²⁺ ,Mn ²⁺ ,Co ²⁺	H_2S in ammonical medium	Sulphides (<i>ZnS</i> etc.)	K_{SP} values of sulphides of group IV are high hence precipitation takes place in higher $[S^{2^-}]$. Basic medium increases ionization of H_2S increasing $[S^{2^-}]$ hence precipitation of group IV.

Group	Basic radicals	Group reagent	Ppt. as	Explanation
V	Ca ²⁺ ,Ba ²⁺ ,Sr ²⁺	(NH ₄) ₂ CO ₃ + NH ₄ Cl	Carbonates (<i>CaCO</i> ₃ etc.)	K_{SP} values of carbonate are les s than that of group VI (Mg^{2+}) hence precipitation before Mg^{2+} .
VI	$Mg^{2+}, (Na^+, K^+ \text{ also included})$	NH_4OH + Na_2HPO_4 (only for Mg^{2+})	White ppt. (<i>MgHPO</i> ₄)	_
0 (Zero)	NH_4^+	_	_	Tested independently from original solution.

Chemical reactions involved in the tests of basic radicals

Group I: When dil. *HCl* is added to original solution, insoluble chlorides of lead, silver mercurous mercury are precipitated.

 $Pb(NH_3)_2 + 2HCl \longrightarrow PbCl_2 + 2HNO_3$;

 $AgNO_3 + HCl \longrightarrow AgCl + HNO_3$

 $Hg(NO_3)_2 + 2HCl \longrightarrow HgCl_2 + 2HNO_3$

*Pb***²⁺** (lead)

- (i) $PbCl_2$ is soluble in hot water and on cooling white crystals are again formed.
- (ii) The solution of *PbCl*₂ gives a yellow precipitate with potassium chromate solution which is insoluble in acetic acid but soluble in sodium hydroxide.

 $PbCl_2 + K_2CrO_4 \longrightarrow PbCrO_4 + 2KCl_4$

 $PbCrO_4 + 4NaOH \longrightarrow Na_2PbO_2 + Na_2CrO_4 + 2H_2O_4$

(iii) The solution of $PbCl_2$ forms a yellow precipitate with potassium iodide solution.

$$PbCl_2 + 2KI \longrightarrow Pbl_2 + 2KCl$$

Yellow ppt.

(iv) White precipitate of lead sulphate is formed with dilute H_2SO_4 .

The precipitate is soluble in ammonium acetate, $PbCl_2 + H_2SO_4 \longrightarrow PbSO_4 + 2HCl$;

 $PbSO_4 + 2CH_3COONH_4 \longrightarrow Pb(CH_3COO)_2 + (NH_4)_2SO_4$

Group II : When hydrogen sulphide is passed in acidified solution, the radicals of second group are precipitated as sulphides. The precipitate is treated with yellow ammonium sulphide. The sulphides of IIB are first oxidised to higher sulphides which then dissolve to form thio-compounds.

$$Ag_2S_3 + 2(NH_4)_2S_2 \longrightarrow 2(NH_4)_2S + As_2S_5$$

 $Sb_2S_3 + 2(NH_4)_2S_2 \longrightarrow 2(NH_4)_2S + Sb_2S_5$

 $SnS + (NH_4)_2S_2 \longrightarrow (NH_4)_2S + SnS_2$

$$\begin{array}{l} As_2S_5 + 3(NH_4)S \longrightarrow 2(NH_4)_3 AsS_4 \\ & \text{Ammonium} \\ \text{thioarsenate} \end{array}$$

$$Sb_2S_5 + 3(NH_4)_2S \longrightarrow 2(NH_4)_2SbS_4 \\ & \text{Ammonium} \\ \text{thioantimonate} \end{array}$$

$$SnS_2 + (NH_4)_2S \longrightarrow (NH_4)_2SnS_3 \\ & \text{Ammonium} \\ \text{thiosantimonate} \end{array}$$

All the three are soluble.

In case, the precipitate does not dissolve in yellow ammonium sulphide, it may be either H_{gS} or P_{bS} or Bi_2S_3 or C_{uS} or C_{dS} . The precipitate is heated with dilute HNO_3 . Except, all other sulphides of are soluble.

$$\begin{array}{l} 3PbS+8HNO_{3}\rightarrow 3Pb(NO_{3})_{2}+2NO+3S+4H_{2}O\\ \\ Bi_{2}S_{3}+8HNO_{3}\rightarrow 2Bi(NO_{3})_{3}+2NO+3S+4H_{2}O\\ \\ 3CuS+8HNO_{3}\rightarrow 3Cu(NO_{3})_{2}+2NO+3S+4H_{2}O \\ \end{array}$$

In case the sulphide dissolves in dilute HNO_3 , a small part of the solution is taken. Dilute H_2SO_4 is added. If lead is present, a white precipitate of lead sulphate appears, $Pb(NO_3)_2 + H_2SO_4 \rightarrow PbSO_4 + 2HNO_3$ (White ppt.)

In absence of lead, the remaining solution is made alkaline by the addition of excess of NH_4OH . Bismuth forms a white precipitat of $Bi(OH)_3$, copper forms a deep blue coloured solution while cadmium forms a colourless soluble complex,

$$\begin{array}{c} Bi(NO_3)_3 + 3NH_4OH \longrightarrow Bi(OH)_3 + 3NH_4NO_3 \\ White ppt. \\ Cu(NO_3)_2 + 4NH_4OH \longrightarrow [Cu(NH_3)_4](NO_3)_2 + 4H_2O; \\ Tetrammine cupric nitrate \\ (deep blue solution) \\ Cd(NO_3)_2 + 4NH_4OH \longrightarrow [Cd(NH_3)_4](NO_3)_2 + 4H_2O \\ Tetrammine cadmium nitrate \end{array}$$

(colourless solution)

Cu^{2+} (copper) :

Blue coloured solution is acidified with acetic acid. When potassium ferrocyanide is added a chocolate coloured precipitate is formed,

 $Cu(NH_{3})_{4}(NO_{3})_{2} + 4CH_{3}COOH \longrightarrow Cu(NO_{3})_{2} + 4CH_{4}COONH_{4}$

 $\begin{aligned} 2Cu(NO_3)_2 + K_4[Fe(CN)_6] &\longrightarrow Cu_2[Fe(CN)_6 + 4KNO_3 \\ & \text{Chocolate ppt.} \end{aligned}$

Group III : Hydroxides are precipitated on addition of excess of ammonium hydroxide in presence of ammonium chloride.

$$AlCl_{3} + 3NH_{4}OH \longrightarrow Al(OH)_{3} + 3NH_{4}Cl$$

Gelatinous ppt.

$$CrCl_3 + 3NH_4OH \xrightarrow{} Cr(OH)_3 + 3NH_4Cl$$

Green ppt.

$$FeCl_3 + 3NH_4OH \longrightarrow Fe(OH)_3 + 3NH_4Cl$$

Brownish red ppt.

 Fe^{3+} (iron): The brownish red precipitate dissolves in dilute *HCl*. The solution is divided into two parts. *Part I*:

 K_4 [Fe(CN)₆] solution is added which forms deep blue solution or precipitate.

$$Fe(OH)_3 + 3HCl \longrightarrow FeCl_3 + 3H_2O$$

 $4FeCl_3 + 3K_4[Fe(CN)_6] \xrightarrow{} Fe_4[Fe(CN)_6]_3 + 12KCl_{Prussian blue}$

Part II :

Addition of potassium thiocyanate solution gives a blood red colouration.

 $FeCl_3 + 3KCNS \longrightarrow Fe(CNS)_3 + 3KCl$ Blood red colour

$Al^{3+}(aluminium)$:

The gelatinous precipitate dissolves in NaOH, $AI(OH)_3 + NaOH \longrightarrow NaAIO_2 + 2H_2O$

The solution is boiled with ammonium chloride when $Al(OH)_3$ is again formed.

 $NaAlO_2 + NH_4Cl + H_2O \longrightarrow Al(OH)_3 + NaCl + NH_3$

Group IV : On passing H_2S through the filtrate of the third group, sulphides of fourth group are precipitated. *NiS* and *CoS* are black and insoluble in concentrated *HCl* while *MnS* (buff coloured), *ZnS* (colourless) are soluble in conc. *HCl*.

 Zn^{2+} (zinc): The sulphide dissolves in *HCl.* $ZnS + 2HCl \longrightarrow ZnCl_2 + H_2S$

When the solution is treated with NaOH, first a white precipitate appears which dissolves in excess of NaOH

$$ZnCl_{2} + 2NaOH \longrightarrow Zn(OH)_{2} + 2NaCl \qquad Zn(OH)_{2} + 2NaOH \longrightarrow Na_{2}ZnO_{2} + 2H_{2}O(Soluble)$$

On passing H_2S , white precipitate of zinc sulphide is formed $Na_2ZnO_2 + H_2S \longrightarrow ZnS + 2NaOH$

 Mn^{2+} (manganese) : Manganese sulphide dissolves in $HCl \qquad MnS + 2HCl \longrightarrow MnCl_2 + H_2S$

On heating the solution with N_{aOH} and Br_2 -water, manganese dissolve gets precipitated.

 $MnCl_{2} + 2NaOH \longrightarrow Mn(OH)_{2} + 2NaCl \qquad Mn(OH)_{2} + O \longrightarrow MnO_{2}H_{2}O$

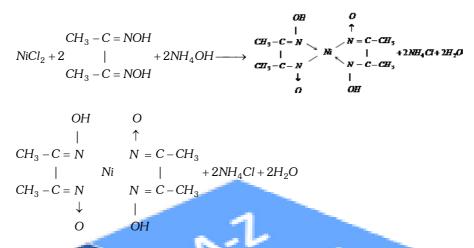
The precipitate is treated with excess of nitric acid and PbO_2 or Pb_3O_4 (red lead). The contents are heated. The formation of permanganic acid imparts pink colour to the supernatant liquid.

247

$$2MnO_2 + 4HNO_3 \longrightarrow 2Mn(NO_3)_2 + 2H_2O + O_2$$

 $2Mn(NO_3)_2 + 5Pb_3O_4 + 26HNO_3 \longrightarrow 2HMnO_4 + 15Pb (NO_3)_2 + 12H_2O_{Permanganic acid (pink)}$

The above test fails in presence of HCl.


Ni^{2+} (nickel) and Co^{2+} (cobalt)

The black precipitate is dissolved in aqua-regia.

 $3NiS + 6HCl + 2HNO_3 \longrightarrow 2NiCl_2 + 2NO + 3S + 2H_2O$

 $3CoS + 6HCl + 2HNO_3 \longrightarrow 3CoCl_2 + 2NO + 3S + 4H_2O$

The solution is evaporated to dryness and residue extracted with dilute *HCl*. It is divided into three parts. *Part I*: Add NH_4OH (excess) and dimethyl glyoxime. A rosy red precipitate appears, if nickel is present,

Part II: Add CH_3COOH in excess and KNO_2 . The appearance of yellow precipite confirms the presence of cobalt.

$$KNO_{2} + CH_{3}COOH \longrightarrow CH_{3}COOK + HNO_{2}$$
$$CoCl_{2} + 2KNO_{2} \longrightarrow Co(NO_{2})_{2} + 2KCl$$
$$Co(NO_{2})_{2} + 2HNO_{2} \longrightarrow Co(NO_{2})_{3} + NO + H_{2}O$$

 $Co(NO_2)_3 + 3KNO_2 \longrightarrow K_3[Co(NO_2)_6]$

Part III: Solution containing either nickel or cobalt is treated with $NaHCO_3$ and bromine water. Appearance of apple green colour is observed, the solution is heated when black precipited is formed, which shows the presence of nickel, $CoCl_2 + 2NaHCO_3 \longrightarrow Co(HCO_3)_2 + 2NaCl$

 $Co(HCO_3)_2 + 4NaHCO_3 \longrightarrow Na_4Co(CO_3)_3 + 3H_2O + 3CO_2$

 $Br_{2} + H_{2}O \longrightarrow 2HBr + O \qquad 2Na_{4}Co(CO_{3})_{3} + H_{2}O + O \longrightarrow 2Na_{3}Co(CO_{3})_{3} + 2NaOH$

 $NiCl_2 + 2NaHCO_3 \longrightarrow NiCO_3 + 2NaCl + H_2O + CO_2$

 $2NiCO_3 + [O] \xrightarrow{} Ni_2O_3 + 2CO_2$

Group V: Ammonium carbonate precipitates V group radicals in the form of carbonates are soluble in acetic acid.

$$BaCO_{3} + 2CH_{3}COOH \longrightarrow (CH_{3}COO)_{2}Ba + CO_{2} + H_{2}O$$

 $SrCO_3 + 2CH_3COOH \longrightarrow (CH_3COO)_2Sr + CO_2 + H_2O$

 $CaCO_3 + 2CH_3COOH \longrightarrow (CH_3COO)_2Ca + CO_2 + H_2O$

 Ba^{2+} (barium) : Barium chromate is insoluble and precipitated by the addition of potassium chromate solution, $Ba(CH_3COO)_2 + K_2CrO_4 \longrightarrow BaCrO_4 + 2CH_3COOK$

 Ca^{2+} (calcium) : Calcium oxalate is insoluble and precipitated by the addition of ammonium oxalate.

$$Ca(CH_{3}COO)_{2} + (NH_{4})_{2}C_{2}O_{4} \xrightarrow{} CaC_{2}O_{4} + 2CH_{3}COONH_{4}$$

White ppt.

Group VI : In the filtrate of V group, some quantity of ammonium oxalate is added as to remove Ba, Ca and Sr completely from the solution. The clear solution is concentrated and made alkaline with NH_4OH . Disodium hydrogen phosphate is now added, a white precipitate is formed.

 $MgCl_2 + Na_2HPO_4 + NH_4OH \longrightarrow \begin{array}{c} Mg(NH_4)PO_4 + 2NaCl + H_2O \\ Megnesium ammonium phosphate \\ (White ppt.) \end{array}$

Zero group NH_4^+ (ammonium) : The substance (salt or mixture) when heated with N_{aOH} solution evolves ammonia.

 $NH_4Cl + NaOH \longrightarrow NaCl + NH_3 + H_2O$

When a rod dipped in HCl is brought on the mouth of the test tube, white fumes of ammonium chloride are

formed, $NH_3 + HCl \longrightarrow NH_4Cl$ White fumes

To the aqueous solution of ammonium salt when Nessler's reagents is added, brown coloured precipitate is formed.

249

		M.C.	.Q.		
1.	In borax bead test, w	hich of the following co	ompound is formed [Cl	BSE PMT 2002]	
	(a) Meta borate	(b) Tetra borate	(c) Double oxide	(d) Ortho borate	
2.	The metal that does n	not give the borax-beau	test is [MP PMT 1999)]	
	(a) Chromium	(b) Nickel	(c) Lead	(d) Manganese	
3.	Which of the followin	g is coloured compound	1? [BCECE 2005]		
	(a) CuF ₂	(b) CuI	(c) NaCl	(d) MgCl ₂	
4.		al that imparts apple gre hloride is [EAMCET 19		flame when introduced in	
	(a) Barium	(b) Strontium	(c) Calcium	(d) Magnesium	
5.	Which gives violet co	oloured bead in borax l	bead test [BHU 1988; N	AP PET 1997]	
	(a) Fe^{2+}	(b) Ni ²⁺	(c) Co^{2+}	(d) Mn^{2+}	
6.			KNO ₃ , brown fumes	evolve. These fumes are	
	[CPMT 1988; IIT 19	987]			
	(a) SO ₂	(b) SO ₃	(c) NO	(d) NO ₂	
7.	Which one of the foll			salt is tested by Pt wire	
	(a) Barium salt		(c) Borate	(d) Lead salt	
8.	Sodium sulphite on heating with dilute HCl liberates a gas which [NCERT 1972]				
	(a) Turns lead acetate	paper black			
		tassium dichromate pap	er green		
	(c) Burns with a blue flame				
	(d) Smells like vinega				
9.	Starch-iodide paper is				
	(a) Iodine	(b) Iodide ion	(c) Oxidising agent		
10.	Which of the following flame test	g salt gives white precipi	itate with solution and d	il. solution and gives green	
	(a) CuCl ₂	(b) BaCl ₂	(c) pbCl ₂	(d) $Cu(NO_3)_2$	
11.	Two gases when mixe	ed give white dense fun	nes, the gases are		
	(a) NH_3 and SO_2	(b) SO ₂ and steam	(c) NH ₃ and HCl	(d) NH_3 and N_2O	
12.	Blue borax bead is o	-	Bihar 1982; MP PET 19	-	
	(a) Zn	(b) Cobalt	(c) Chromium	(d) Fe	
13.			to the burner flame [Do	_	
	(a) $B(OMe)_3$	(b) Na(OMe)	(c) $Al(OPr)_3$	(d) $Sn(OH)_2$	
			_		

14.	A colourless gas w	with the smell of rotten	fish is [AFMC 2005]	
	(a) H ₂ S	(b) PH ₃	(c) SO_2	(d) None of these
15.	MnO_2 and H_2SO_4	added to NaCl, the gro	eenish yellow gas liber	rated is [Orissa JEE 2005]
	(a) Cl ₂	(b) NH ₃	(c) N_2	(d) H ₂
16.	Which of the follo gently warmed wir	th conc H_2SO_4 . [IIT 1]		ture of NaCl and $K_2Cr_2O_7$ is IU 1984; MP PMT 2002]
	(a) A deep red vap	en passed into NaOH s	solution gives a vallow	v solution of No Cr O
	(c) Chlorine gas is	-	solution gives a yellow	solution of $\operatorname{Iva}_2 \operatorname{Cl}_2 \operatorname{O}_7$
	(d) Chromyl chlorid			
17.			(II) jons to form a brox	wn complex [AIIMS 1982, 87;
17.		SE PMT 2000; Pb. PM		
	(a) N ₂ O	(b) NO	(c) N_2O_3	(d) N_2O_5
18.	Which of the follo	wing will not produce a	a precipitate with AgN	O ₃ solution [MP PMT 1990]
	(a) F ⁻	(b) Br	(c) $CO_3^{2^-}$	(d) $PO_4^{3^-}$
19.	[CPMT 1974]			s passed through its solution
				aCl ₂ (d) Copper nitrate
20.	1971]		chilles.	contains [DPMT 1981; CPMT
	(a) Cl ⁻	(b) I	c) Br	(d) NO_3^{-}
21.	contains [CPMT 1			oroform layer turns violet. Salt
	(a) Cl ⁻	(b) I	(c) NO_3^-	(d) $S^{2^{-}}$
22.		vith ammonium molybo		
	(a) Violet	(b) Pink	(c) Canary yellow	(d) Green
23.		is soluble in NH ₄ OH [A		
	(a) PbCl ₂	(b) PbSO ₄	(c) AgCl	(d) CaCO ₃
24.		metals are [DPMT 198		(A
	(a) Coloured	(b) Unstable	(c) Soluble in wat	
25.			-	s due to the formation of 2000; MP PET 2002; CPMT 2004]
	(a) Ferrous nitrite	(b) FeSO ₄ NO	(c) $FeSO_2NO_2$	(d) Ferrous nitrate
26.		of a salt when treated w H. Radical present in th	5	ives a white precipitate, which
	(a) Cl ⁻	(b) Br ⁻	(c) I ⁻	(d) NO_3^{-}
27.	When CO ₂ is passed disappears because		ns milky. When excess	s of CO_2 is passed, milkyness
	(a) Reaction is reve	ersed	(b) Water soluble	$Ca(HCO_3)_2$ is formed
	(c) Vaporisable calcium derivative is formed (d) None of these			
			251	

29.In the test of sulphate r (a) Conc. HCl30.Which reagent is used (a) BaSO431 is formed when p (a) HI32.Chromyl chloride test is mixture [CPMT 1990; (a) Sulphate33.A solution of a salt in d it confirms the presence (a) NO2 ⁻ 34.Ammonia reacts with e (a) N2 and HCl35.Which of the following (a) SO42 ⁻ 36.The gas which is absort [AMU 1999] (a) NO37.Which one of the follow [IIT 1995] (a) Cl ⁻ 38.Na2CO3 cannot be used (a) CO32 ⁻ 39.The number of hydroxi hydrolysis is [Pb. CET (a) 240.By passing KMnO4 gas (a) K2S41.Which of the following (a) Ethyl bromide42.Which sulphide is solut (a) SnS43.When acetic acid and K of the compound (a) Copper cyanide		ith MnO_2 brown fumes	
(a) Conc. HCl30.Which reagent is used (a) BaSO431 is formed when p (a) HI32.Chromyl chloride test is mixture [CPMT 1990; (a) Sulphate33.A solution of a salt in d it confirms the presence (a) NO_2^- 34.Asolution of a salt in d it confirms the presence (a) NO_2^- 34.Ammonia reacts with e (a) N_2 and HCl35.Which of the following (a) $SO_4^{2^-}$ 36.The gas which is absort [AMU 1999] (a) NO37.Which one of the follow [IIT 1995] (a) Cl38.Na2CO3 cannot be used (a) $CO_3^{2^-}$ 39.The number of hydroxi hydrolysis is [Pb. CET (a) 240.By passing KMnO4 gas (a) K2S41.Which of the following (a) Ethyl bromide42.Which sulphide is solut (a) SnS43.When acetic acid and K of the compound (a) Copper cyanide	(b) NO_3^{-}	(c) Cl ⁻	(d) [
30.Which reagent is used (a) $BaSO_4$ 31 is formed when p (a) HI32.Chromyl chloride test is mixture [CPMT 1990; (a) Sulphate33.A solution of a salt in d it confirms the presence (a) NO_2^- 34.Asolution of a salt in d it confirms the presence (a) NO_2^- 34.Ammonia reacts with e (a) N_2 and HCl35.Which of the following (a) $SO_4^{2^-}$ 36.The gas which is absort [AMU 1999] (a) NO37.Which one of the follow [IIT 1995] (a) Cl ⁻ 38.Na2CO3 cannot be used (a) $CO_3^{2^-}$ 39.The number of hydroxi hydrolysis is [Pb. CET (a) 240.By passing KMnO4 gas (a) K2S41.Which of the following (a) Ethyl bromide42.Which sulphide is solut (a) SnS43.When acetic acid and K of the compound (a) Copper cyanide			
(a) $BaSO_4$ 31 is formed when p (a) HI 32. Chromyl chloride test is mixture [CPMT 1990; (a) Sulphate 33. A solution of a salt in d it confirms the presence (a) NO_2^- 34. Ammonia reacts with e (a) N_2 and HCl 35. Which of the following (a) $SO_4^{2^-}$ 36. The gas which is absort [AMU 1999] (a) NO 37. Which one of the follow [IIT 1995] (a) Cl ⁻ 38. Na ₂ CO ₃ cannot be used (a) $CO_3^{2^-}$ 39. The number of hydroxi hydrolysis is [Pb. CET (a) 2 40. By passing KMnO ₄ gas (a) K ₂ S 41. Which of the following (a) Ethyl bromide 42. Which sulphide is solut (a) SnS 43. When acetic acid and K of the compound (a) Copper cyanide	(b) Conc. H_2SO_4	5	(d) None of these
31 is formed when p (a) HI32.Chromyl chloride test is mixture [CPMT 1990; (a) Sulphate33.A solution of a salt in d it confirms the presence (a) NO_2^- 34.Ammonia reacts with e (a) N_2 and HC135.Which of the following (a) $SO_4^{2^-}$ 36.The gas which is absorb [AMU 1999] (a) NO37.Which one of the follow [IIT 1995] (a) CI38.Na ₂ CO ₃ cannot be used (a) $CO_3^{2^-}$ 39.The number of hydroxi hydrolysis is [Pb. CET (a) 240.By passing KMnO ₄ gas (a) K ₂ S41.Which of the following (a) Ethyl bromide42.Which sulphide is solut (a) SnS43.When acetic acid and K of the compound (a) Copper cyanide	•		
(a) HI 32. Chromyl chloride test is mixture [CPMT 1990; (a) Sulphate 33. A solution of a salt in d it confirms the presence (a) NO_2^- 34. Ammonia reacts with e (a) N_2 and HCl 35. Which of the following (a) $SO_4^{2^-}$ 36. The gas which is absort [AMU 1999] (a) NO 37. Which one of the follow [IIT 1995] (a) Cl ⁻ 38. Na ₂ CO ₃ cannot be used (a) $CO_3^{2^-}$ 39. The number of hydroxi hydrolysis is [Pb. CET (a) 2 40. By passing KMnO ₄ gas (a) K ₂ S 41. Which of the following (a) Ethyl bromide 42. Which sulphide is solut (a) SnS 43. When acetic acid and K of the compound (a) Copper cyanide	(b) NaOH	(c) $Pb(NO_3)_2$	(d) KOH
 32. Chromyl chloride test is mixture [CPMT 1990; (a) Sulphate 33. A solution of a salt in d it confirms the presence (a) NO₂⁻ 34. Ammonia reacts with e (a) N₂ and HCl 35. Which of the following (a) SO₄²⁻ 36. The gas which is absort [AMU 1999] (a) NO 37. Which one of the follow [IIT 1995] (a) Cl⁻ 38. Na₂CO₃ cannot be used (a) CO₃²⁻ 39. The number of hydroxi hydrolysis is [Pb. CET (a) 2 40. By passing KMnO₄ gas (a) K₂S 41. Which of the following (a) Ethyl bromide 42. Which sulphide is solut (a) SnS 43. When acetic acid and K of the compound (a) Copper cyanide			
mixture [CPMT 1990; (a) Sulphate 33. A solution of a salt in d it confirms the presence (a) NO_2^- 34. Ammonia reacts with e (a) N_2 and HCl 35. Which of the following (a) $SO_4^{2^-}$ 36. The gas which is absort [AMU 1999] (a) NO 37. Which one of the follow [IIT 1995] (a) Cl ⁻ 38. Na ₂ CO ₃ cannot be used (a) $CO_3^{2^-}$ 39. The number of hydroxi hydrolysis is [Pb. CET (a) 2 40. By passing KMnO ₄ gas (a) K ₂ S 41. Which of the following (a) Ethyl bromide 42. Which sulphide is solut (a) SnS 43. When acetic acid and K of the compound (a) Copper cyanide	(b) I ₂	(c) HIO ₃	(d) KIO_3
 33. A solution of a salt in d it confirms the presence (a) NO₂⁻ 34. Ammonia reacts with e (a) N₂ and HCl 35. Which of the following (a) SO₄²⁻ 36. The gas which is absort [AMU 1999] (a) NO 37. Which one of the follow [IIT 1995] (a) Cl⁻ 38. Na₂CO₃ cannot be used (a) CO₃²⁻ 39. The number of hydroxi hydrolysis is [Pb. CET (a) 2 40. By passing KMnO₄ gas (a) K₂S 41. Which of the following (a) Ethyl bromide 42. Which sulphide is solut (a) SnS 43. When acetic acid and K of the compound (a) Copper cyanide 	-	-	nce of the following in a
it confirms the presence (a) NO_2^- 34. Ammonia reacts with e (a) N_2 and HCl 35. Which of the following (a) $SO_4^{2^-}$ 36. The gas which is absorb [AMU 1999] (a) NO 37. Which one of the follow [IIT 1995] (a) CГ 38. Na ₂ CO ₃ cannot be used (a) CO ₃ ^{2^-} 39. The number of hydroxi hydrolysis is [Pb. CET (a) 2 40. By passing KMnO ₄ gas (a) K ₂ S 41. Which of the following (a) Ethyl bromide 42. Which sulphide is solut (a) SnS 43. When acetic acid and K of the compound (a) Copper cyanide	(b) Chromium	(c) Chloride (d)	Chromium and chloride
34.Ammonia reacts with ex (a) N_2 and HCl35.Which of the following (a) $SO_4^{2^-}$ 36.The gas which is absort [AMU 1999] (a) NO37.Which one of the follow [IIT 1995] (a) Cl38.Na2CO3 cannot be used (a) $CO_3^{2^-}$ 39.The number of hydroxi hydrolysis is [Pb. CET (a) 240.By passing KMnO4 gas (a) K_2S 41.Which of the following (a) Ethyl bromide42.Which sulphide is solut (a) SnS43.When acetic acid and K of the compound (a) Copper cyanide	-		vith starch iodine solution CERT 1974; CPMT 1977]
(a) N_2 and HCl 35. Which of the following (a) $SO_4^{2^-}$ 36. The gas which is absorb [AMU 1999] (a) NO 37. Which one of the follow [IIT 1995] (a) Cl 38. Na ₂ CO ₃ cannot be used (a) CO ₃ ^{2^-} 39. The number of hydroxi hydrolysis is [Pb. CET (a) 2 40. By passing KMnO ₄ gas (a) K ₂ S 41. Which of the following (a) Ethyl bromide 42. Which sulphide is solut (a) SnS 43. When acetic acid and K of the compound (a) Copper cyanide	(b) I ⁻	(c) NO_3^-	(d) CH ₃ COO ⁻
35.Which of the following (a) $SO_4^{2^-}$ 36.The gas which is absort [AMU 1999] (a) NO37.Which one of the follow [IIT 1995] (a) CГ38.Na2CO3 cannot be used (a) CO32^-39.The number of hydroxi hydrolysis is [Pb. CET (a) 240.By passing KMnO4 gas (a) K2S41.Which of the following (a) Ethyl bromide42.Which sulphide is solut (a) SnS43.When acetic acid and K of the compound (a) Copper cyanide	excess of chlorine to for	orm [DPMT 2000]	
(a) $SO_4^{2^-}$ 36. The gas which is absorb [AMU 1999] (a) NO 37. Which one of the follow [IIT 1995] (a) CГ 38. Na ₂ CO ₃ cannot be used (a) CO ₃ ^{2^-} 39. The number of hydroxi hydrolysis is [Pb. CET (a) 2 40. By passing KMnO ₄ gas (a) K ₂ S 41. Which of the following (a) Ethyl bromide 42. Which sulphide is solut (a) SnS 43. When acetic acid and K of the compound (a) Copper cyanide	(b) NH ₄ Cl and NCl ₃	(c) NCl_3 and HCl	(d) N_2 and NH_4Cl
36.The gas which is absorb [AMU 1999] (a) NO37.Which one of the follow [IIT 1995] (a) Cl ⁻ 38.Na2CO3 cannot be used (a) CO32 ⁻ 38.Na2CO3 cannot be used (a) CO32 ⁻ 39.The number of hydroxi hydrolysis is [Pb. CET (a) 240.By passing KMnO4 gas (a) K2S41.Which of the following (a) Ethyl bromide42.Which sulphide is solut (a) SnS43.When acetic acid and K of the compound (a) Copper cyanide	anions would decolou	rise acidified KMnO ₄ sol	lution
[AMU 1999](a) NO37.Which one of the follow[IIT 1995](a) $C\Gamma$ 38.Na2CO3 cannot be used(a) $CO3^2$ 39.The number of hydroxihydrolysis is [Pb. CET(a) 240.By passing KMnO4 gas(a) K2S41.Which of the following(a) Ethyl bromide42.Which sulphide is solut(a) SnS43.When acetic acid and Kof the compound(a) Copper cyanide	(b) S ₂ ⁻	(c) NO_3^-	(d) CH ₃ COO ⁻
 37. Which one of the follow [IIT 1995] (a) CI 38. Na₂CO₃ cannot be used (a) CO₃²⁻ 39. The number of hydroxi hydrolysis is [Pb. CET (a) 2 40. By passing KMnO₄ gas (a) K₂S 41. Which of the following (a) Ethyl bromide 42. Which sulphide is solut (a) SnS 43. When acetic acid and K of the compound (a) Copper cyanide 	oed by ferrous sulphat	e solution giving blackis	h brown colour is
[IIT 1995] (a) Cl^{-} 38. Na ₂ CO ₃ cannot be used (a) $CO_{3}^{2^{-}}$ 39. The number of hydroxichydrolysis is [Pb. CET (a) 2 40. By passing KMnO ₄ gas (a) K ₂ S 41. Which of the following (a) Ethyl bromide 42. Which sulphide is solut (a) SnS 43. When acetic acid and K of the compound (a) Copper cyanide	(b) CO	(c) N ₂	(d) NH ₂
 38. Na₂CO₃ cannot be used (a) CO₃^{2⁻} 39. The number of hydroxichydrolysis is [Pb. CET) (a) 2 40. By passing KMnO₄ gas (a) K₂S 41. Which of the following (a) Ethyl bromide 42. Which sulphide is solution (a) SnS 43. When acetic acid and K of the compound (a) Copper cyanide 	ving anions is not easily	removed from aqueous	solutions by precipitation
 (a) CO₃^{2⁻} 39. The number of hydroxichydrolysis is [Pb. CET (a) 2 40. By passing KMnO₄ gas (a) K₂S 41. Which of the following (a) Ethyl bromide 42. Which sulphide is solution (a) SnS 43. When acetic acid and K of the compound (a) Copper cyanide 	(b) NO ₃	(c) $CO_3^{2^-}$	(d) $SO_4^{2^-}$
 39. The number of hydroxi hydrolysis is [Pb. CET (a) 2 40. By passing KMnO₄ gas (a) K₂S 41. Which of the following (a) Ethyl bromide 42. Which sulphide is solut (a) SnS 43. When acetic acid and K of the compound (a) Copper cyanide 	d to identify [BVP_20	04]	
 hydrolysis is [Pb. CET (a) 2 40. By passing KMnO₄ gas (a) K₂S 41. Which of the following (a) Ethyl bromide 42. Which sulphide is solut (a) SnS 43. When acetic acid and K of the compound (a) Copper cyanide 	(b) $SO_3^{2^-}$	(c) $S^{2^{-}}$	(d) $SO_4^{2^-}$
 40. By passing KMnO₄ gas (a) K₂S 41. Which of the following (a) Ethyl bromide 42. Which sulphide is solut (a) SnS 43. When acetic acid and K of the compound (a) Copper cyanide 		one molecule of sodiun	n carbonate (Na_2CO_3) on
 (a) K₂S 41. Which of the following (a) Ethyl bromide 42. Which sulphide is solut (a) SnS 43. When acetic acid and K of the compound (a) Copper cyanide 	(b) 1	(c) 3	(d) 4
 41. Which of the following (a) Ethyl bromide 42. Which sulphide is solut (a) SnS 43. When acetic acid and K of the compound (a) Copper cyanide 	s in acidified H ₂ S solu	tion, we get	[MP PET 1997]
 (a) Ethyl bromide 42. Which sulphide is solut (a) SnS 43. When acetic acid and K of the compound (a) Copper cyanide 	(b) S	(c) K_2SO_3	(d) MnO_2
 42. Which sulphide is solut (a) SnS 43. When acetic acid and K of the compound (a) Copper cyanide 	g doesn't give a ppt. w	with silver nitrate solution	n. [J & K 2005]
 (a) SnS 43. When acetic acid and K of the compound (a) Copper cyanide 	(b) Sodium bromide	(c)Calcium chloride	(d) Sodium chloride
 (a) SnS 43. When acetic acid and K of the compound (a) Copper cyanide 			
43. When acetic acid and K of the compound(a) Copper cyanide	(b) AS_2S_3	(c) Sb_2S_3	(d) CdS
(a) Copper cyanide			ate precipitate is obtained
		(b) Copper ferrocyanic	le
(c) Basic copper sulpha	ate	(d) Basic copper cyanide	
··· •• •	252		

	sulphide (SnS) in y (a) SnS	(b) SnS ₂		(d) $(NH_4)_2 SnS_3$
45.		oluble in acetic acid is	2 5	(d) $(141_4)_2 5115_3$
чЈ.	(a) Calcium oxide			e (d) Calcium hydroxide
46.				to its aqueous solution
1 0.	(a) Hg ⁺	(b) Mg ⁺⁺	(c) Zn ⁺⁺	(d) Cd ⁺⁺
47.	() 0	e qualitative analysis of		(u) Cu
T /.	(a) HCl	(b) H_2S (alkaline)		(d) None of these
48.		2		ate when solution are mixed
1 0.	[NCERT 1984]	wing pairs would be ex	peeted to form precipit	ate when solution are mixed
	(a) K^+ , SO_4^{2-}	(b) Na^+ , S^{-2}	(c) Ag^+ , NO_3^-	(d) Al ³⁺ , OH ⁻
49.	Addition of solution	of oxalate to an aqueou	is solution of mixture of	f Ba ²⁺ , Sr ²⁺ $\partial \eta $ Ca ²⁺ and will
	precipitate [MP PN	/T 1985]		
	(a) Ca ²⁺	(b) Ca^{2+} , Sr^{+2}	(c) Ba^{2+} , Sr^{+2}	(d) All the three
50.	Distinguishing reag	ent between silver and	lead salts is [MADT Bi	har 1984]
	(a) H ₂ S gas		(b) Hot dilute HCl	
	(c) $NH_4Cl_{(S)} + NH$	$_{4}OH_{(aq)}$ (solid) + soluti	on (d) $NH_4Cl_{(S)}$ (solid	$(1) + (NH_4)_2 CO_{3(aq)}$ solution
51.		t be precipitated by bo		· · ·
	(a) Pb ²⁺		(c) Ag ⁺	(d) Sn^{2+}
52.	Pb(CH ₃ COO), give	escolour with H ₂ S []		
	(a) Orange	(b) Red	(c) Black	(d) White
53.	Fe ²⁺ ion can be dis	tinguished by Fe ³⁺ ion	by [DPMT 2000]	
	(a) NH ₄ SCN	(b) AgNO ₃	(c) BaCl ₂	(d) None of these
54.	Which of the follow 1998]	ving change the colour c	of the aqueous solution	of FeCl ₃ [Roorkee Qualifying
	(a) $K_4[Fe(CN)_6]$	(b) H ₂ S	(c) NH ₄ CNS	(d) KCNS
55.	Which of the follow	wing mixture is chromi	c acid [Pb. PMT 2000]	
	(a) $K_2 Cr_2 O_7$ and H	HCl	(b) K_2SO_4 conc.	H ₂ SO ₄
	(c) $K_2 Cr_2 O_7$ and c	conc. H ₂ SO ₄	(d) H_2SO_4 and $H0$	C1
56.		-	, which of the following	g will be least soluble in water
	[AMU (Engg.) 199	-		
	(a) MgS	(b) NaCl	(c) Na ₂ S	(d) MgCl ₂
57.	-	oluble [MP PET 1999]		
	(a) In conc. nitric a		(b) In conc. hydro	chloric acid
- 0	(c) In a solution of		(d) In water	
58.		assed through the HCl of does not precipitate ou		utions of CuCl ₂ , HgCl ₂ , BiCl
			(c) Bi_2S_3	

59.	Group reagent for analytic group IV is [Kurukshetra CET 2002]							
	(a) $NH_4Cl + NH_4OH$ (b) $NH_4Cl + NH_4OH + H_2S$							
	(c) $NH_4OH + (NH_4)_2CO_3$ (d) $HCl + H_2S$							
60.	When H_2S is passed through Hg_2S we get [AIEEE 2002]							
	(a) HgS (b) HgS + Hg ₂ S (c) Hg ₂ S + Hg (d) Hg ₂ S							
61.	$[X] + H_2SO_4 \rightarrow [Y]$ a colourless gas with irritating smell							
	$[Y] + K_2 Cr_2 O_7 + H_2 SO_4 \rightarrow \text{green solution}$							
	[X] and [Y] is [IIT-JEE (Screening) 2003]							
	(a) $SO_3^{2^-}$, SO_2 (b) $C\Gamma$, HCl (c) S^{-2} , H_2S (d) $CO_3^{2^-}$, CO_2							
62.	Concentrated sodium hydroxide can separate a mixture of [MP PMT 2000]							
	(a) Zn^{2+} and Pb^{2+} (b) Al^{3+} and Zn^{3+} (c) Cr^{3+} and Fe^{3+} (d) Al^{3+} and Cr^{3+}							
63.	What product is formed by mixing the solution of $K_4[Fe(CN)_6]$ with the solution of $FeCl_3$ [Roorkee 1989]							
	(a) Ferro-ferricyanide (b) Ferric-ferrocyanide (c) Ferri-ferricyanide (d) None of these							
64.	When H_2S is passed through a mixture containing Cu^{+2} , Ni^{+2} , Zn^{+2} in acidic solution then ion will precipitate [RPMT 2002]							
	(a) Cu^{+2} , Ni^{+2} (b) Ni^{+2} (c) Cu^{+2} , Zn^{+2} (d) Cu^{+2}							
65.	Ferric ion forms a prussian blue coloured ppt. due to [CPMT 1980; BHU 1980; MP PET 1995;							
	Kurukshetra CEE 1998; RPET 1999; MP PMT 2001]							
	(a) $K_4[Fe(CN)_6]$ (b) $Fe_4[Fe(CN)_6]$ (c) $KMnO_4$ (d) $Fe(OH)_3$							
66.	A 0.3 M HCl solution contains the following ions Hg ²⁺ , Cd ²⁺ , Sr ²⁺ , Fe ²⁺ $\rightarrow t \hat{\tau}$ Cu ²⁺ . The addition							
	of H ₂ S to above solution will precipitate [CPMT 1973]							
	(a) Cd, Cu and Hg (b) Cd, Fe and Sr (c) Hg, Cu and Fe (d) Cu, Sr and Fe							
67.	Which of the following gives a ppt. with $Pb(NO_3)_2$ but not with $Ba(NO_3)_2$ [CPMT 1979; MP PET 1997]							
	(a) NaCl (b) Sodium acetate							
	(c) Sodium nitrate (d) Sodium hydrogen phosphate							
68.	In the group III radicals, in place of NH_4Cl which of the following can be used [AIIMS 1980, 82; MP PMT 1985]							
	(a) NH_4NO_3 (b) $(NH_4)_2 SO_4$ (c) $(NH_4)_2$ (d) NaCl							
69.	Which compound does not dissolve in hot dilute HNO ₃ [IIT 1996]							
	(a) HgS (b) PbS (c) CuS (d) CdS							
70.	Which of the following sulphate is insoluble in water [MNR 1995]							
	(a) $CuSO_4$ (b) $CdSO_4$ (c) $PbSO_4$ (d) $BaSO_4$							
71.	Mark the compound which turns black with NH ₄ OH [AFMC 1981; MP PMT 1995]							
	(a) Lead chloride (b) Mercurous chloride (c) Mercuric chloride (d) Silver chloride							
72.	Colour of cobalt chloride solution is [AFMC 1981]							
	(a) Pink (b) Black (c) Colourless (d) Green							
73.	Nessler's reagent is used to detect [CPMT 1989; AIIMS 1997; MP PET 1999]							
	(a) $CrO_4^{2^-}$ (b) $PO_4^{3^-}$ (c) MnO_4^{-} (d) NH_4^{+}							
_	254							

74.	Fe(OH) ₃ can be sep	parated from Al(OH) ₃	by addition of [BHU	[1981]					
	(a) Dil. HCl		(b) NaCl solutio	(b) NaCl solution					
	(c) NaOH solution		(d) NH_4Cl and	NH ₄ OH					
75.	The reagents NH_4C	l and aqueous NH ₃ w	vill precipitate [IIT 199	91]					
	(a) Ca^{2+}	(b) Al^{3+}	(c) Mg^{2+}	(d) Zn^{2+}					
76.	Addition of SnCl ₂ to HgCl ₂ gives ppt [BVP 2003]								
	(a) White turning to	-		(b) White turning to gray					
	(c) Black turning to		(d) None of these						
77.	C /	omplex of [CPMT 20							
	(a) Fe^{3+}	(b) Fe^{2+}	(c) Fe^{4+}	(d) Cu^{2+}					
78.		t for the detection of a	ammonia the active sp	pecies is [Kerala (Med.) 2003]					
	(a) Hg ₂ Cl ₂	(b) Hg ²⁺	(c) Hg_2I_2	(d) $HgI_4^{2^-}$					
79.		() U		ated when the acidic solution is					
	made dilute [MP PET 2000]								
	(a) HgS	(b) PbS	(c) CdS	(d) CuS					
80.	A reagent used to test the presence of ion is [KCET 1998]								
	(a) H_2S	(b) NH ₄ CNS	(c) $K_4[Fe(CN)_6]$	(d) $K_3[Fe(CN)_6]$					
81.	The following four s	olutions are kept in sep	arate beakers and copp	per metal is put in each of them.					
	Which solution will become blue after some time [MP PMT 2003]								
	(a) AgNO ₃ solution			ution (d) NaNO ₃ solution					
82.	In qualitative analysis, in order to detect second group basic radical, H ₂ S gas is passed in the								
	presence of dilute HCl to [KCET 2004]								
	(a) Increase in dissociation of H_2S (b) Decrease the dissociation of salt solution								
	(c) Decrease the dissociation of H_2S (d) Increase the dissociation of salt solution								
83.	Sodium nitroprusside when added to an alkaline solution of sulphide ions produce a [AFMC 2005]								
	(a) Red colouration	(b) Blue colouratio	n (c) Purple coloura	ation (d) Brown colouration					
84.	If 20 ml of 0.25 N strong acid and 30 ml of 0.2 N of strong base are mixed, then the resulting								
	solution is [KCET 2002]								
	(a) 0.25 N basic			c (d) 0.2 N basic					
85.	10 ml of 10 M H_2SO_4 is mixed to 100 ml 1M NaOH solution. The resultant solution will be [NCERT 1971]								
	(a) Acidic	(b) Neutral	(c) Weakly alkali	ne (d) Strongly alkaline					
86.	The equivalent weight	ght of KMnO ₄ in alkali	• • •	.,					
	(a) 31.60	(b) 52.66	(c) 79.00	(d) 158.00					
87.	Phenolphthalein is	most suitable indicator							
	(a) CH ₃ COOH and NH ₄ OH			(b) CH ₃ COOH and NaOH					
	(c) HCl and NH_4O	•	(d) H_2CO_3 and I						
88.	20 ml of a N solution of $KMnO_4$ just reacts with 20 ml of a solution of oxalic acid. The weigh of oxalic acid crystals in 1N of the solution is [JIPMER 1999]								
			(c) 63 g	(d) 63 a					
	(a) 31.5 g	(b) 126 g	(c) 05 g	(d) 6.3 g					

ANSWERS KEY

1	а	16	a,b,d	31	b	46	а	61	С	76	b
2	С	17	b	32	С	47	b	62	С	77	b
3	а	18	d	33	а	48	d	63	b	78	d
4	d	19	а	34	С	49	d	64	d	79	С
5	d	20	b	35	b	50	b	65	b	80	d
6	d	21	b	36	а	51	b	66	а	81	а
7	а	22	С	37	b	52	С	67	а	82	С
8	b	23	С	38	а	53	а	68	а	83	С
9	а	24	С	39	а	54	а	69	а	84	d
10	b	25	b	40	b	55	С	70	d	85	а
11	С	26	а	41	а	56	а	71	b	86	d
12	b	27	b	42	b	57	а	72	а	87	d
13	а	28	а	43	b	58	d	73	d	88	С
14	b	29	d	44	b	59	b	74	С		
15	а	30	C	45	С	60	e م	75	b		